
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 21: Sockets and tcp

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda
1. RAID.

2. Sockets.

3. Project 4.

2

Agenda
1. RAID.

2. Sockets.

3. Project 4.

3

4

RAID
Redundant Array of Inexpensive Disks (RAID)

Invented by David Patterson at Berkeley.
Sits in between hardware and the file system.

Idea: Use many disks in parallel to increase storage bandwidth,
improve reliability.

Implemented in the hardware.
Files are striped across disks.
Each stripe portion is read/written in parallel.
Bandwidth increases with more disks.

RAID

5

6

RAID Challenges
Small files (small writes less than a full stripe)

Need to read entire stripe, update with small write, then write
entire stripe out to disks.

Reliability
More disks increase chance of failure (MTBF).
Example:

Say 1 disk has 10% chance of failing in one year.
With 10 disks, chance of any 1 disk failing in one year is
1 – (1 – 0.1)^10 = 65%!

RAID with parity
Improve reliability by storing redundant parity.

In each stripe, use one block to store parity data.
XOR of all data blocks in stripe.

Can recover any data block from all others + parity.
Introduces overhead, but disks are “inexpensive.”

7

+++ =

8

RAID Levels
RAID 0: Striping

Improved bandwidth but decreased reliability.

RAID 1: Mirroring
Maintain full copy of all data.
Recover if a drive fails.

RAID 10: Mirroring and striping
Supported by many PC motherboards.
Improved bandwidth and recoverability if a drive fails.

RAID 5: Floating parity
Parity blocks for different stripes written to different disks.
No single parity disk no bottleneck at that disk.

9

10

Agenda
1. RAID.

2. Sockets.

3. Project 4.

11

OS Abstractions

Next few lectures:
Abstraction of network, a preview of EECS 489
Distributed systems, a preview of EECS 491

12

Operating System

Hardware

Applications

CPU DiskPhysical Memory

Threads File systemVirtual memory

OS abstraction of network
Hardware reality

One network interface controller (NIC) enabling machine-to-
machine communication shared by all processes.
Network is unreliable, may lose or garble packets, deliver
duplicates or out-of-order.
Unordered delivery of finite-sized messages.

OS abstraction
Process-to-process communication.
Reliable and ordered delivery of a byte stream.

13

Hardware reality

OS abstraction

OS abstraction of network

14

Network

Machine 1

NIC

Machine 3

NIC

Machine 2

NIC

Process A

Socket

Process C

Socket

Process B

SocketSocket

Inter-machine to inter-process
Every process thinks it has its own:

Processor (threads)
Memory (address space)
Network interface (sockets)

Socket
Virtual network interface controller.
Endpoint for communication.
NIC named by MAC/IP address; socket named by “port number”
(via bind)
Programming interface: BSD sockets (Friday’s lab)

15

Analogy
Computer is like an apartment building.

NIC has a well-known address (MAC/IP address).
Contains many mailboxes.

Each labeled with apt. no. (port number).
You put outgoing mail in box, mailman picks up.
Mailman puts mail in box, you pickup later.
Mailbox has a fixed size (can’t overstuff).

16

OS virtualizes NIC

UDP (user datagram protocol): Unreliable IP + sockets.
TCP (transmission control protocol): IP + sockets + reliable,
ordered bytestreams.

17

Operating system

Network interface card

Process A

socket 1 socket 2

Process B

socket 3

Socket as a bounded buffer
How do you send data when network busy?
How do you receive data when process busy?

18

Web Browser

Socket

NIC NIC

Socket

Web Server

TCP
What guarantees does internet provide for packet delivery?

chirp, chirp, chirp... (none)
Packets can be:

Dropped/lost
Mutilated/corrupted
Duplicated
Delayed/delivered out of order

TCP must provide guarantees on top of this.

19

Ordered messages
Hardware reality: messages can be re-ordered.

Sender: A, B
Receiver: B, A

Application interface: messages recvd in order sent.

How to detect reordering of messages?
Assign sequence numbers.

Ordering of messages per ”connection”
TCP: process opens connection (via connect), sends. sequence
of data, then closes connection.
Sequence number specific to a socket-to-socket connection.

20

Ordered messages
Example:

Sender sends 0, 1, 2, 3, 4, …
Receiver receives 0, 1, 3, 2, 4, …

How should receiver deal with reordering?
Drop 3, Deliver 2, Deliver 4
Deliver 3, Drop 2, Deliver 4
Save 3, Deliver 2, Deliver 3, Deliver 4

21

Ordered messages
Example:

Sender sends 0, 1, 2, 3, 4, …
Receiver receives 0, 1, 3, 2, 4, …

How should receiver deal with reordering?
Drop 3, Deliver 2, Deliver 4
Deliver 3, Drop 2, Deliver 4
Save 3, Deliver 2, Deliver 3, Deliver 4

22

1

0

Ordered messages
Example:

Sender sends 0, 1, 2, 3, 4, …
Receiver receives 0, 1, 3, 2, 4, …

How should receiver deal with reordering?
Drop 3, Deliver 2, Deliver 4
Deliver 3, Drop 2, Deliver 4
Save 3, Deliver 2, Deliver 3, Deliver 4

23

1

0

Ordered messages
Example:

Sender sends 0, 1, 2, 3, 4, …
Receiver receives 0, 1, 3, 2, 4, …

How should receiver deal with reordering?
Drop 3, Deliver 2, Deliver 4
Deliver 3, Drop 2, Deliver 4
Save 3, Deliver 2, Deliver 3, Deliver 4

24

3

0

Ordered messages
Example:

Sender sends 0, 1, 2, 3, 4, …
Receiver receives 0, 1, 3, 2, 4, …

How should receiver deal with reordering?
Drop 3, Deliver 2, Deliver 4
Deliver 3, Drop 2, Deliver 4
Save 3, Deliver 2, Deliver 3, Deliver 4

25

3

2

Reliable messages
Hardware interface: Messages can be dropped, duplicated, or
corrupted.
Application interface: Each message is delivered exactly once (without
corruption).

How to fix a dropped message?
Have the sender re-send it.

How does sender know message was dropped?
Have receiver ACK messages; resend after timeout. Learns the
timeout by observing responses to previous messages.

Downside of dealing with drops this way?
Could send duplicate messages, wait too long before resending.

26

Fast retransmission
Resend if receive 3 duplicate acks

27

Send 1

Ack 1

Fast retransmission
Resend if receive 3 duplicate acks.

28

Send 1

Ack 1Send 2
Send 3

Ack 1

Fast retransmission
Resend if receive 3 duplicate acks.

29

Send 1

Ack 1Send 2
Send 3

Ack 1Send 4

Ack 1

Send 2
Ack 4

Reliable messages
How to deal with duplicate messages?

Detect by sequence numbers and drop duplicates.

How to deal with corrupted messages?
Add redundant information (e.g., checksum).
Fix by dropping corrupted message.

Basic strategy
Treat corrupted messages as dropped messages.
Potential for dropped and duplicated messages.
Solve duplicates by sequence numbering and dropping.

30

Byte streams
Hardware interface: Send/receive messages.
Application interface: Abstraction of data stream.

TCP: Sender sends messages of arbitrary size, which are combined
into a single stream.

Implementation:
Break up stream into fragments.
Send fragments as distinct messages/packets.
Reassemble fragments at destination.

31

Message boundaries
TCP has no message boundaries (unlike UDP).

Example: Sender sends 100 bytes, then 50 bytes; Receiver could
receive 1-150 bytes.

Receiver must loop until all bytes received.

rc = recv(s, buf, size, 0);
Blocks until error or can return >0 bytes.
May return up to size bytes.
Returns 0 if connection closed, -1 on error.

32

Message boundaries
Call to recv blocks until at least 1 byte received.

How to know number of bytes to receive?
Convention (e.g., specified by protocol).
Specified in header.
End-of-message delimiter.
Sender closes connection.

33

OS abstraction of network

34

Hardware reality
Multiple computers

connected via a network
Machine-to-machine

communication
Unreliable and unordered
delivery of finite messages

Abstraction
Single computer

Process-to-process
communication

Reliable and ordered
delivery of byte stream

Client-server
Common way to structure a distributed application:

Server provides some centralized service.
Client makes request to server, waits for response.

Example: Web server
Server stores and returns web pages.
Clients run Web browsers, make GET/POST requests.

Example: Producer/consumer relationship with a server
Server manages state associated with coke machine.
Clients call client_produce() or client_consume(), which send
request to the server and return when done.
Client requests block at the server until they are satisfied.

35

Client-server example
client_produce()

{
send produce request to server;
receive response;
}

36

server()
{
while (true)

{
receive request;
if (produce request)

add coke to machine;
else

take coke out of machine;
send response;
}

}

Problems?
Only single client at a time.
What if machine is full or empty?
Machine can deadlock.

Client-server example
client_produce()

{
send produce request to server;
receive response;
}

37

server()
{
while (true)

{
receive request;
if (produce request)

{
while (machine is full)

wait;
add coke to machine;
signal;
}

else
...

send response;
}

}

Problems?
Still possible to deadlock.

Example with threads

38

Two modifications necessary to reduce blocking on slow operations?

server()
{
while (true)

{
receive request;
if (produce request)

create thread that calls
server_produce();

else
create thread that calls

server_consume();
}

}

server_produce()
{
lock;
while (machine is full)

wait;
put coke in machine;
signal;
send response;
unlock;
}

Example with threads

39

server()
{
while (true)

{
wait for new connection

from client;
create thread that calls

handle_request();
}

}

handle_request()
{
receive request;
produce request ?

server_produce() :
server_consume();

}

server_produce()
{
lock;
while (machine is full)

wait;
put coke in machine;
signal;
unlock;
send response;
}

Optimizations
How to lower overhead of creating threads?

Maintain pool of worker threads.

There are other ways to structure the server
Basic goal: Account for “slow” operations.

Examples:
Polling (via select)
Signals

40

Next time …

Remote Procedure Call

41

Agenda
1. RAID.

2. Sockets.

3. Project 4.

42

Project 4: due August 17
Start ASAP: Due in only 19 days.

Read man pages.
Things to keep in mind:

Encrypted data is not a C-string.
File data can contain NULL character.
Data received over network is untrusted.

Friday’s lab: Sockets!

43

Project 4
Use assertions to catch errors early

No. of free disk blocks matches file system contents?
Are you unlocking a lock that you hold?
Verify initial file system is not malformed

Use showfs to verify that contents of file system match your
expectations

Test cases: cover all states of data structures

44

Message boundaries
TCP has no message boundaries (unlike UDP)

Example: Sender sends 100 bytes, then 50 bytes;
Receiver could receive 1-150 bytes

Receiver must loop until all bytes received

rc = recv(s, buf, size, 0);
Blocks until error or can return >0 bytes
May return up to size bytes
Returns 0 if connection closed, -1 on error

45

Looping to get n bytes
char buf[n];
int bytes_rcvd = 0;
while (bytes_rcvd < n)

{
rc = recv (s, buf + bytes_rcvd,

n - bytes_rcvd, 0);
if (rc <= 0)

{
perror("read");
break;
}

bytes_rcvd += rc;
}

46

Here’s how to receive
n bytes.

Determining boundaries
How to know # of bytes to receive?

Convention (e.g., specified by protocol)
Specified in fixed-size header (length field)
Sentinel: end-of-message delimiter

Careful about reading too many bytes!
Sender closes connection

Loop until recv returns 0

47

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 21: Sockets and tcp
	Agenda
	Agenda
	RAID
	RAID
	RAID Challenges
	RAID with parity
	RAID Levels
	Slide Number 9
	Slide Number 10
	Agenda
	OS Abstractions
	OS abstraction of network
	OS abstraction of network
	Inter-machine to inter-process
	Analogy
	OS virtualizes NIC
	Socket as a bounded buffer
	TCP
	Ordered messages
	Ordered messages
	Ordered messages
	Ordered messages
	Ordered messages
	Ordered messages
	Reliable messages
	Fast retransmission
	Fast retransmission
	Fast retransmission
	Reliable messages
	Byte streams
	Message boundaries
	Message boundaries
	OS abstraction of network
	Client-server
	Client-server example
	Client-server example
	Example with threads
	Example with threads
	Optimizations
	Next time …
	Agenda
	Project 4: due August 17
	Project 4
	Message boundaries
	Looping to get n bytes
	Determining boundaries

